bTimA = 0.5
bTimB = 4.5
bTimC = 4
bTimD = 2.5
gTimA = 0.01
gTimB = 0.99
gTimC = 4.5
gTimD = 3
gTimE = 3
CASE[0.0000,bTimA]{; < - - - - - - - - 'bTimA'
        S=T/bTimA
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3] ;; Q
        B = 0 *tFunk/57.295779
    }
    CASE[bTimA+0.000001,bTimB]{; < - - - - 'bTimB'
        S=(T-bTimA)/(bTimB-bTimA)
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3] ;; Q
        B = 0 /57.295779 - 20 *tFunk/57.295779
    }
    CASE[bTimB+0.000001,bTimC]{; < - - - - 'bTimC'
        S=(T-bTimB)/(bTimC-bTimB)
        B = -20 /57.295779 + 70 *tFunk/57.295779
    }
    CASE[bTimC+0.000001,bTimD]{; < - - - - 'bTimD'
        S=(T-bTimC)/(bTimD-bTimC)
        B = 50 /57.295779 - 25 *tFunk/57.295779
CASE[0.000,gTimA]{;  < - - - - - - - - 'gTimA'
        S=T/gTimA
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3]
        gPunk = gfOne - gfOne*tFunk
    }
    CASE[gTimA+0.000001,gTimB]{; < - - - - 'gTimB'
        S=(T-gTimA)/(gTimB-gTimA)
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3]
        gPunk = 0.1 + 4 *tFunk
    }
    CASE[gTimB+0.000001,gTimC]{; < - - - - 'gTimC'
        S=(T-gTimB)/(gTimC-gTimB)
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3]
        gPunk = 4.1 - 5 *tFunk
    }
    CASE[gTimC+0.000001,gTimD]{; < - - - - 'gTimD'
        S=(T-gTimC)/(gTimD-gTimC)
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3]
        gPunk = -0.9 + 5 *tFunk
    }
    CASE[gTimD+0.000001,gTimE]{; < - - - - 'gTimE'
        S=(T-gTimD)/(gTimE-gTimD)
        tFunk = 6*pwr[S,5]-15*pwr[S,4]+10*pwr[S,3]
        gPunk = 4.1 - 5 *tFunk
This is what you're looking at in the first picture, there should just be a smooth transition from -20 to +50 degrees over the top of that hill (that's what I'm trying to do anyway)